
Displaying model fits in Lattice plots

Deepayan Sarkar

The lattice add-on package for R is an implementation of Trellis graphics (originally developed for S and
S-PLUS). It is a powerful and elegant high-level data visualization system, with an emphasis on
multivariate data, that is sufficient for typical graphics needs, and is also flexible enough to handle most
nonstandard requirements.

This article discusses a situation many of us often find ourselves in, where we want to augment a raw
data plot with a model fit. We restrict our attention to regression models, that is, models where the
response variable is continuous. We assume that the reader has a basic familiarity with model-fitting in R
(including the formula-based modeling language) and the use of summary(), fitted(), predict(), and
related methods. We also assume basic familiarity with lattice.

We use two datasets for our examples. The first one is the Oxboys dataset from the nlme package, which
records the growth (height) over time of 26 boys from Oxford. Each boy had his height measured on 9
occasions.

> data(Oxboys, package = "nlme")

> head(Oxboys, 20)

Subject age height Occasion

1 1 -1.0000 140.5 1

2 1 -0.7479 143.4 2

3 1 -0.4630 144.8 3

4 1 -0.1643 147.1 4

5 1 -0.0027 147.7 5

6 1 0.2466 150.2 6

7 1 0.5562 151.7 7

8 1 0.7781 153.3 8

9 1 0.9945 155.8 9

10 2 -1.0000 136.9 1

11 2 -0.7479 139.1 2

12 2 -0.4630 140.1 3

13 2 -0.1643 142.6 4

14 2 -0.0027 143.2 5

15 2 0.2466 144.0 6

16 2 0.5562 145.8 7

17 2 0.7781 146.8 8

18 2 0.9945 148.3 9

19 3 -1.0000 150.0 1

20 3 -0.7479 152.1 2

1

A simple Trellis plot of the data can be obtained by

> xyplot(height ~ age | Subject, data = Oxboys,

strip = FALSE, aspect = "xy", pch = 16,

xlab = "Standardized age", ylab = "Height (cm)")

Each panel represents one subject. As the subject identifiers are uninformative, the usual strips on top of
each panel has been omitted. Our objective will be to fit growth curves (possibly nonlinear) to the data
and superpose them on the plot.

Standardized age

H
ei

gh
t (

cm
)

130

140

150

160

170

−1.0 0.0 1.0

●
●●●●●

●●●
●

●●
●
●●

●●●

−1.0 0.0 1.0

●●●●●●
●

●
●

●
●

●
●●

●
●

●●

−1.0 0.0 1.0

●
●●

●●●
●●

●

●
●

●●●●●●
●

−1.0 0.0 1.0

●●
●●●●●

●
●

●
●●

●

●●

●
●

●

−1.0 0.0 1.0

●
●●

●●
●

●●
●

●
●

●
●
●

●
●

●
●

−1.0 0.0 1.0

●
●

●
●●

●
●

●●

●
●●

●●●
●●●

−1.0 0.0 1.0

●

●
●

●●
●

●
●

●

●●
●

●
●●

●
●●

−1.0 0.0 1.0

●
●

●●●
●

●
●

●

●
●

●
●
●

●
●

●
●

−1.0 0.0 1.0

●
●

●
●●

●

●
●

●

●
●

●
●●

●
●

●
●

−1.0 0.0 1.0

●
●

●
●●●●

●
●

●●
●●

●
●

●

●
●

−1.0 0.0 1.0

●
●

●
●
●

●
●

●
●

●
●

●
●●●

●
●●

−1.0 0.0 1.0

●●
●

●●●

●
●●

●
●

●
●
●

●

●
●

●

−1.0 0.0 1.0

●●
●

●
●

●

●
●

●

130

140

150

160

170

●

●
●

●●

●

●
●

●

2

The second example is the Gcsemv dataset from the mlmRev package. This dataset records the GCSE exam
scores in a science subject for 1905 students. The marks in two components (course work and written
paper) are recorded separately. We are interested in modeling the expected written score based on course
work score, taking into account the gender of the student.

> data(Gcsemv, package = "mlmRev")

> head(Gcsemv)

school student gender written course

1 20920 16 M 23 NA

2 20920 25 F NA 71.2

3 20920 27 F 39 76.8

4 20920 31 F 36 87.9

5 20920 42 M 16 44.4

6 20920 62 F 36 NA

A plot of the raw data is produced by

> xyplot(written ~ course | gender, data = Gcsemv,

xlab = "Coursework score",

ylab = "Written exam score")

Coursework score

W
rit

te
n

ex
am

 s
co

re

0

20

40

60

80

20 40 60 80 100

●
●

●●

●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

● ●

●

●

●

● ●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

● ●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●
●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
● ●

●

● ●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

F

20 40 60 80 100

●

●

●

●●● ●

●

●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●● ●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●
●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

● ●

M

3

Adding to a Lattice display

In both examples, we wish to add to the basic plot of the raw data. In traditional R graphics, one usually
adds components to a plot incrementally, using “low-level” functions such as lines(). The analogue in
Lattice graphics is to write panel functions.

Understanding panel functions

The idea of panel functions often intimidate beginners, but it is actually quite simple. As the name
suggests, panel functions are simply R functions (!). They play a central role in lattice because they are
responsible for actually drawing the graphical content of panels. Each lattice plot has a panel function.
This function gets executed every time a panel is drawn, with the data specific to that panel supplied as
arguments. As the input data is different for each panel, so is the result.

Every high level function has a default panel function, e.g., xyplot() has default panel function
panel.xyplot(). When creating a lattice plot, one can replace this default by one’s own choice by
specifying a panel argument. The default panel function is of course a valid (though uninteresting) choice,
and thus, the code that produced the GCSE score plot above is equivalent to

> xyplot(written ~ course | gender, data = Gcsemv,

xlab = "Coursework score",

ylab = "Written exam score",

panel = panel.xyplot)

Here “panel.xyplot” is a predefined function. But creating new functions is not at all difficult in R. Here
we explicitly define a new inline function, which simply calls panel.xyplot() with exactly the arguments
given to it.1

> xyplot(written ~ course | gender, data = Gcsemv,

xlab = "Coursework score",

ylab = "Written exam score",

panel = function(...) {

panel.xyplot(...)

})

Even if it is not completely clear what is going on here, it should not be difficult to believe (or to check)
that while things look a little more complicated, the results remain unchanged.

Now, as we remarked earlier, panels look different because the data that goes into the panel function
each time it is executed is different. To do anything interesting, we need to get access to this data. The
specific arguments that are used to pass data to the panel function depends on the specific high-level
lattice function being used, which in this case is xyplot(). A look at the help page for panel.xyplot()
tells us that these arguments are x and y. Thus, another equivalent way to create the plot above is

> xyplot(written ~ course | gender, data = Gcsemv,

xlab = "Coursework score",

ylab = "Written exam score",

panel = function(x, y, ...) {

panel.xyplot(x, y, ...)

})

Here, we finally have access to the panel-specific data, although we still have not done anything interesting
with it. Although the sequence of calls so far produce identical results, it is important to understand the
concepts that have been introduced to appreciate what follows.

1The mysterious ... requires some explanation, which we will get to soon.

4

A nontrivial panel function

Now that we have access to the data inside the inline panel function we are defining, we can use it to add
further elements to the plot. In the following example, we add several elements: a reference grid (which
does not really depend on the data), a loess fit, and marginal “rugs” indicating cases where one (but not
both) of the score components are missing.

> xyplot(written ~ course | gender, data = Gcsemv,

xlab = "Coursework score",

ylab = "Written exam score",

panel = function(x, y, ...) {

panel.grid(h = -1, v = -1)

panel.xyplot(x, y, ...)

panel.loess(x, y, ..., col = "black")

panel.rug(x = x[is.na(y)],

y = y[is.na(x)])

})

Here the individual elements are added by the component functions panel.grid(), panel.loess(),
panel.rug(), etc., which all produce some form of graphical output, based on arguments supplied to it.
Together they define a procedure for plotting the data in a panel, encapsulated in the “panel function”.
Notice that we also needed to include a call to panel.xyplot(), as without it the raw data would not have
been plotted. Also notice that panel.grid() is called before it, but panel.loess() after, so that the grid
is rendered below the points but the loess fit above. Having the panel function completely control the
display allows this kind of fine control.

Coursework score

W
rit

te
n

ex
am

 s
co

re

0

20

40

60

80

20 40 60 80 100

●
●

●●

●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

● ●

●

●

●

● ●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

● ●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●
●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
● ●

●

● ●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

F

20 40 60 80 100

●

●

●

●●● ●

●

●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●● ●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●
●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

● ●

M

5

Passing arguments through the ... argument

We have used a ... construct in all the panel functions defined above; it is now time to understand how it
works. The idea is fairly intuitive. Functions normally have zero, one, or more named arguments. It can
also optionally have a special ... argument. When such a function is called, they can be supplied further
arguments not matching the named arguments. These arguments can then be passed on to other functions
called by it, where it may match a named argument. The first explicit use of an inline function above
provides an example of this:

panel = function(...) {

panel.xyplot(...)

}

The panel function is called with arguments named x and y. Although panel itself does not recognize
these names, it will dutifully pass them on to panel.xyplot(), which does recognize them.

Using optional features of predefined panel functions

panel.xyplot() has only two compulsory arguments (x and y), but it has quite a few optional arguments
(with appropriate default values) which can modify its behaviour in various ways. In particular, two of its
arguments, grid and type, can be used to make it include a background grid and a fitted loess smooth
respectively (see help(panel.xyplot) for details). For example, we may write

> xyplot(written ~ course | gender, data = Gcsemv,

panel = function(x, y) {

panel.xyplot(x, y, grid = TRUE,

type = c("p", "smooth"),

col.line = "black")

})

to produce the plot below.

course

w
rit

te
n

0

20

40

60

80

20 40 60 80 100

●
●

●●

●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

● ●

●

●

●

● ●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

● ●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●
●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
● ●

●

● ●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

F

20 40 60 80 100

●

●

●

●●● ●

●

●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●● ●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●
●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

● ●

M

6

Simplifying the call

A very useful fact is that the previous call is equivalent to

> xyplot(written ~ course | gender, data = Gcsemv,

grid = TRUE, type = c("p", "smooth"), col.line = "black",

panel = function(x, y, ...) {

panel.xyplot(x, y, ...)

})

This is a consequence of how xyplot() itself is designed. It has a ... argument, which allows arbitrary
additional arguments to be supplied to it. Arguments that are not recognized by xyplot() are passed on
to the panel function.

Now notice how the panel function in the last plot is similar to our initial panel function examples that
did nothing special. Following our earlier steps in reverse, we now see that the above is equivalent to

> xyplot(written ~ course | gender, data = Gcsemv, grid = TRUE,

type = c("p", "smooth"), col.line = "black",

panel = panel.xyplot)

and hence also equivalent to

> xyplot(written ~ course | gender, data = Gcsemv, grid = TRUE,

type = c("p", "smooth"), col.line = "black")

The end result is thus produced by a call that looks quite simple, and is quite close to the plot produced
using the complicated panel function above (except for the rugs). Of course, this approach only works for
features already supported by the default panel function, and requires knowledge of what features are
available. For example, rugs are not supported by panel.xyplot(), and thus require an explicit panel
function. Still, most of the default panel functions (named as “panel.” followed by the high-level function
name) do have optional arguments that implement the most common variants, making this a quite useful
approach.

7

Back to regression lines

Returning to our original question of how to add model fits, let us now consider the Oxboys dataset. We
can of course add a loess smooth to each panel as before, but we wish to stick to parametric models for the
remainder of this discussion. The help page for panel.xyplot() tells us that type="r" will add a linear
regression line, so we can do

> xyplot(height ~ age | Subject, data = Oxboys, strip = FALSE,

aspect = "xy", pch = 16, col.line = "black",

grid = TRUE, type = c("p", "r"),

xlab = "Standardized age", ylab = "Height (cm)")

Standardized age

H
ei

gh
t (

cm
)

130

140

150

160

170

−1.0 0.0 1.0

●
●●●●●

●●●
●

●●
●
●●

●●●

−1.0 0.0 1.0

●●●●●●
●

●
●

●
●

●
●●

●
●

●●

−1.0 0.0 1.0

●
●●

●●●
●●

●

●
●

●●●●●●
●

−1.0 0.0 1.0

●●
●●●●●

●
●

●
●●

●

●●

●
●

●

−1.0 0.0 1.0

●
●●

●●
●

●●
●

●
●

●
●
●

●
●

●
●

−1.0 0.0 1.0

●
●

●
●●

●
●

●●

●
●●

●●●
●●●

−1.0 0.0 1.0

●

●
●

●●
●

●
●

●

●●
●

●
●●

●
●●

−1.0 0.0 1.0

●
●

●●●
●

●
●

●

●
●

●
●
●

●
●

●
●

−1.0 0.0 1.0

●
●

●
●●

●

●
●

●

●
●

●
●●

●
●

●
●

−1.0 0.0 1.0

●
●

●
●●●●

●
●

●●
●●

●
●

●

●
●

−1.0 0.0 1.0

●
●

●
●
●

●
●

●
●

●
●

●
●●●

●
●●

−1.0 0.0 1.0

●●
●

●●●

●
●●

●
●

●
●
●

●

●
●

●

−1.0 0.0 1.0

●●
●

●
●

●

●
●

●

130

140

150

160

170

●

●
●

●●

●

●
●

●

8

This does not seem entirely appropriate though, as we expect growth curves to be nonlinear. Without
thinking too much about what kind of nonlinearity would be appropriate, let us start out with a simple
quadratic model. We can no longer get away without a panel function, but we can use what we have
already learned to come up with

> xyplot(height ~ age | Subject, data = Oxboys, strip = FALSE,

aspect = "xy", pch = 16, grid = TRUE,

panel = function(x, y, ...) {

panel.xyplot(x, y, ...)

fm <- lm(y ~ poly(x, 2))

panel.lines(x, fitted(fm), col.line = "black")

},

xlab = "Standardized age", ylab = "Height (cm)")

The specific model used here is not important, and we can replace the call to lm() inside the panel
function with any other suitable modeling function, provided of course that the model fit uses only the
data for that panel. The panel.lines() call draws lines joining its arguments (in the order provided),
producing a reasonable approximation of the quadratic curve that we actually want to represent.

Standardized age

H
ei

gh
t (

cm
)

130

140

150

160

170

−1.0 0.0 1.0

●
●●●●●

●●●
●

●●
●
●●

●●●

−1.0 0.0 1.0

●●●●●●
●

●
●

●
●

●
●●

●
●

●●

−1.0 0.0 1.0

●
●●

●●●
●●

●

●
●

●●●●●●
●

−1.0 0.0 1.0

●●
●●●●●

●
●

●
●●

●

●●

●
●

●

−1.0 0.0 1.0

●
●●

●●
●

●●
●

●
●

●
●
●

●
●

●
●

−1.0 0.0 1.0

●
●

●
●●

●
●

●●

●
●●

●●●
●●●

−1.0 0.0 1.0

●

●
●

●●
●

●
●

●

●●
●

●
●●

●
●●

−1.0 0.0 1.0

●
●

●●●
●

●
●

●

●
●

●
●
●

●
●

●
●

−1.0 0.0 1.0

●
●

●
●●

●

●
●

●

●
●

●
●●

●
●

●
●

−1.0 0.0 1.0

●
●

●
●●●●

●
●

●●
●●

●
●

●

●
●

−1.0 0.0 1.0

●
●

●
●
●

●
●

●
●

●
●

●
●●●

●
●●

−1.0 0.0 1.0

●●
●

●●●

●
●●

●
●

●
●
●

●

●
●

●

−1.0 0.0 1.0

●●
●

●
●

●

●
●

●

130

140

150

160

170

●

●
●

●●

●

●
●

●

9

Moving from panel-specific to more general models

The approach taken so far is fundamentally limited in the sense that it can only handle models that are
fitted using the within-panel data alone, because that is the only data available to the panel function. In
practice, we are often interested in more complex approaches that model the full data. To use such models
in a lattice plot, it is simplest to fit the model separately, before attempting to create the plot.

Again, the particular model used is not important for our purposes. For illustration, we will use a mixed
effect model that generalizes the quadratic model used above, with common linear and quadratic
coefficients, and a subject-specific random intercept. Formally, the model is given by

yij = α0 + bi + α1xij + α2x
2
ij + εij

where i indexes subjects, j indexes repeated measurements (occasion) of a subject, xij denotes
(standardized) age, and yij denotes height. The error terms bi and εij are assumed to be independent, with
bi ∼ N(0, τ2) and εij ∼ N(0, σ2). The parameters in the model are the coefficients αi and the variance
terms τ2 and σ2. The model can be fit using the lme4 package as follows.

> library(lme4)

> fm.mixed <- lmer(height ~ age + I(age^2) + (1 | Subject), data = Oxboys)

We might now proceed to view the estimates of the parameters and related numerical quantities; for
example, using

> summary(fm.mixed)

Linear mixed model fit by REML

Formula: height ~ age + I(age^2) + (1 | Subject)

Data: Oxboys

AIC BIC logLik deviance REMLdev

940.7 957.9 -465.3 930 930.7

Random effects:

Groups Name Variance Std.Dev.

Subject (Intercept) 65.570 8.0975

Residual 1.641 1.2810

Number of obs: 234, groups: Subject, 26

Fixed effects:

Estimate Std. Error t value

(Intercept) 149.0617 1.5930 93.57

age 6.5152 0.1295 50.29

I(age^2) 0.7412 0.2264 3.27

Correlation of Fixed Effects:

(Intr) age

age -0.001

I(age^2) -0.059 -0.020

However, our goal here is simply to visually incorporate the fitted model in the plot, and all we need for
that are the (closely related) fitted() and predict() methods for the particular modeling function used.
The fitted() function returns the fitted values for the same data that have been used to fit the model.
The predict() function can be used to obtain the predicted values for a new set of inputs. If no new data
is provided, predict() essentially behaves like fitted().

10

We now have the fitted model object fm.mixed, and we wish to plot the fitted regression curve in each
panel. Two approaches are possible. We can make the fitted model available to the panel function, and
then use it as needed. Alternatively, we can augment our dataset with the necessary information before
plotting anything. We start with the first approach.

Fitted models in panel functions

We already know how to make the fitted model available to the panel function: pass it in as an argument
not recognized by xyplot(), and it will be passed on to the panel function. Thus, we have

> xyplot(height ~ age | Subject, data = Oxboys, fit = fm.mixed,

strip = FALSE, aspect = "xy", pch = 16, grid = TRUE,

panel = function(x, y, ..., fit) {

panel.xyplot(x, y, ...)

subj.coef <- coef(fit)$Subject[packet.number(),]

ypred <- with(subj.coef,

`(Intercept)` + `age` * x + `I(age^2)` * x^2)

panel.lines(x, ypred, col = "black")

},

xlab = "Standardized age", ylab = "Height (cm)")

However, this seems unnecessarily complicated. Partly this is due to the use of the lmer() function; the
fitted model does not have a predict() method (for legitimate reasons), and so we had to manually
construct the predictions using the result of coef(). In general, for multipanel plots the current panel will
represent some subset of the full dataset, and we would need to somehow figure out the corresponding part
of the model. Here, for example, we needed to figure out (inside the panel function) which Subject was
represented in the panel.

Standardized age

H
ei

gh
t (

cm
)

130

140

150

160

170

−1.0 0.0 1.0

●
●●●●●

●●●
●

●●
●
●●

●●●

−1.0 0.0 1.0

●●●●●●
●

●
●

●
●

●
●●

●
●

●●

−1.0 0.0 1.0

●
●●

●●●
●●

●

●
●

●●●●●●
●

−1.0 0.0 1.0

●●
●●●●●

●
●

●
●●

●

●●

●
●

●

−1.0 0.0 1.0

●
●●

●●
●

●●
●

●
●

●
●
●

●
●

●
●

−1.0 0.0 1.0

●
●

●
●●

●
●

●●

●
●●

●●●
●●●

−1.0 0.0 1.0

●

●
●

●●
●

●
●

●

●●
●

●
●●

●
●●

−1.0 0.0 1.0

●
●

●●●
●

●
●

●

●
●

●
●
●

●
●

●
●

−1.0 0.0 1.0

●
●

●
●●

●

●
●

●

●
●

●
●●

●
●

●
●

−1.0 0.0 1.0

●
●

●
●●●●

●
●

●●
●●

●
●

●

●
●

−1.0 0.0 1.0

●
●

●
●
●

●
●

●
●

●
●

●
●●●

●
●●

−1.0 0.0 1.0

●●
●

●●●

●
●●

●
●

●
●
●

●

●
●

●

−1.0 0.0 1.0

●●
●

●
●

●

●
●

●

130

140

150

160

170

●

●
●

●●

●

●
●

●

11

One simpler but fairly general approach works well in this and many other situations. Consider the
following example, which produces identical output.

> xyplot(height ~ age | Subject, data = Oxboys, fit = fm.mixed,

strip = FALSE, aspect = "xy", pch = 16, grid = TRUE,

panel = function(x, y, ..., fit, subscripts) {

panel.xyplot(x, y, ...)

ypred <- fitted(fit)[subscripts]

panel.lines(x, ypred, col = "black")

},

xlab = "Standardized age", ylab = "Height (cm)")

This makes use of two features. First, the fitted() method extracts the fitted values from the model
object. This of course corresponds to the full dataset, and is not specific to the panel; it will be a vector
with the same length as the number of observation used to fit the model, and will be identical for each
panel. The second piece is the subscripts argument, which lattice passes to the panel function,
containing the indices of the observations in the original dataset that end up in the panel. This is used to
extract the corresponding elements of fitted(fit).

An interesting corollary of this approach is the following trick.

> xyplot(height + fitted(fm.mixed) ~ age | Subject, data = Oxboys,

strip = FALSE, aspect = "xy", pch = 16, grid = TRUE,

type = c("p", "l"), distribute.type = TRUE,

xlab = "Standardized age", ylab = "Height (cm)")

Except for the color of the line, the output is essentially identical. This treats the fitted values as an
additional set of y values, and plots them with lines rather than points. See help(panel.superpose) for
an explanation of the distribute.type argument.

Standardized age

H
ei

gh
t (

cm
)

130

140

150

160

170

−1.0 0.0 1.0

●
●●●●●

●●●
●

●●
●
●●

●●●

−1.0 0.0 1.0

●●●●●●
●

●
●

●
●

●
●●

●
●

●●

−1.0 0.0 1.0

●
●●

●●●
●●

●

●
●

●●●●●●
●

−1.0 0.0 1.0

●●
●●●●●

●
●

●
●●

●

●●

●
●

●

−1.0 0.0 1.0

●
●●

●●
●

●●
●

●
●

●
●
●

●
●

●
●

−1.0 0.0 1.0

●
●

●
●●

●
●

●●

●
●●

●●●
●●●

−1.0 0.0 1.0

●

●
●

●●
●

●
●

●

●●
●

●
●●

●
●●

−1.0 0.0 1.0

●
●

●●●
●

●
●

●

●
●

●
●
●

●
●

●
●

−1.0 0.0 1.0

●
●

●
●●

●

●
●

●

●
●

●
●●

●
●

●
●

−1.0 0.0 1.0

●
●

●
●●●●

●
●

●●
●●

●
●

●

●
●

−1.0 0.0 1.0

●
●

●
●
●

●
●

●
●

●
●

●
●●●

●
●●

−1.0 0.0 1.0

●●
●

●●●

●
●●

●
●

●
●
●

●

●
●

●

−1.0 0.0 1.0

●●
●

●
●

●

●
●

●

130

140

150

160

170

●

●
●

●●

●

●
●

●

12

Irregular data

Unfortunately, this approach does not work in all situations. For example, in the Gcsemv example, we
might try the following.

> fm <- lm(written ~ course + I(course^2) + gender, Gcsemv, na.action = na.exclude)

> xyplot(written + fitted(fm) ~ course | gender, data = Gcsemv,

type = c("p", "l"), distribute.type = TRUE)

The na.exclude argument is needed, as otherwise missing values are omitted from fitted(fm) making its
length different from that of the other variables. However, as we can see below, the result is a mess because
the x values are not ordered (and there are too many of them as well).

course

w
rit

te
n

+
 fi

tte
d(

fm
)

0

20

40

60

80

20 40 60 80 100

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

● ●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

F

20 40 60 80 100

●

●

●

●●● ●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

● ●

M

13

We can of course always stick to the built-in solutions; for example,

> xyplot(written ~ course | gender, Gcsemv,

type = c("p", "r"), col.line = "black")

However, more complex models need more work. Consider the three models

> fm0 <- lm(written ~ poly(course, 2),

data = subset(Gcsemv, !(is.na(written) | is.na(course))))

> fm1 <- update(fm0, written ~ poly(course, 2) + gender)

> fm2 <- update(fm0, written ~ poly(course, 2) * gender)

The first model is a quadratic regression model that ignores gender. The second model incorporates gender
as an additive term, and the third model further includes interaction terms. Here we have used the
“non-missing” subset of Gcsemv in fm0 to avoid further grief related to missing values, and used the
update() function to simplify the subsequent model fitting calls. Our goal is to compare the fits from fm2

and fm1 with that from fm0.
All we really need are the fitted values at a sufficiently dense grid covering the range of the predictors.

Our approach will be to compute these values separately and then combine them suitably before plotting.
This approach generalizes to more models, as well as other types of models. We first define a suitable
evaluation grid.

> course.rng <- range(Gcsemv$course, finite = TRUE)

> grid <-

expand.grid(course = do.breaks(course.rng, 30),

gender = unique(Gcsemv$gender))

Next we evaluate the corresponding fitted values for each of the three models.

> fm0.pred <- cbind(grid, written = predict(fm0, newdata = grid))

> fm1.pred <- cbind(grid, written = predict(fm1, newdata = grid))

> fm2.pred <- cbind(grid, written = predict(fm2, newdata = grid))

Notice that we have done this in a way that each set of predictions comes in the form of a data frame with
columns course, gender, and written.

> str(fm0.pred)

'data.frame': 62 obs. of 3 variables:

$ course : num 9.25 12.28 15.3 18.32 ...

$ gender : Factor w/ 2 levels "F","M": 2 2 2 2 2 2 2 2 ...

$ written: num 29.4 29.7 30.1 30.5 ...

We will now transform our original dataset to have the same form.

> orig <- Gcsemv[c("course", "gender", "written")]

> str(orig)

'data.frame': 1905 obs. of 3 variables:

$ course : num NA 71.2 76.8 87.9 44.4 NA 89.8 17.5 ...

$ gender : Factor w/ 2 levels "F","M": 2 1 1 1 2 1 1 2 ...

$ written: num 23 NA 39 36 16 36 49 25 ...

and then combine it with the predictions from the models we wish to compare.

> combined <- make.groups(original = orig, fm0 = fm0.pred, fm2 = fm2.pred)

14

The make.groups() function combines similarly structured datasets (or simple atomic vectors) with
possibly different number of observations into a single dataset, adding a new variable to indicate the origin
of each observation in the new dataset.

> str(combined)

'data.frame': 2029 obs. of 4 variables:

$ course : num NA 71.2 76.8 87.9 44.4 NA 89.8 17.5 ...

$ gender : Factor w/ 2 levels "F","M": 2 1 1 1 2 1 1 2 ...

$ written: num 23 NA 39 36 16 36 49 25 ...

$ which : Factor w/ 3 levels "original","fm0",..: 1 1 1 1 1 1 1 1 ..

The combined dataset thus consists of the original raw observations (orig), and evaluations of the fitted
models fm0 and fm2. All this manipulation finally leads to the call that produces the plot we want.

> xyplot(written ~ course | gender,

data = combined, groups = which,

type = c("p", "l", "l"), distribute.type = TRUE)

The raw data are plotted as points, whereas the model fit evaluations are joined by lines to produce a
representation of the fitted curves.

A similar comparison of fm0 and fm1 is left a an exercise.

course

w
rit

te
n

0

20

40

60

80

20 40 60 80 100

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

● ●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

F

20 40 60 80 100

●

●

●

●●● ●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

● ●

M

15

Summary

The take-home message from all this is that custom panel functions provide finest level of control, but
built-in panel functions are also powerful because we can take specify their arguments using argument
passing. However, this requires knowledge of arguments (so read documentation!).

For adding regression lines from complex models, it is usually best to obtain a suitable representation of
the relevant data before the plotting is done. The special function panel.superpose() is useful for
grouping, and in particular the distribute.type argument is useful when adding model fits.

Session information

� R Under development (unstable) (2011-07-26 r56509), x86_64-unknown-linux-gnu

� Locale: LC_CTYPE=en_IN, LC_NUMERIC=C, LC_TIME=en_IN, LC_COLLATE=en_IN, LC_MONETARY=en_IN,
LC_MESSAGES=en_IN, LC_PAPER=C, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_IN, LC_IDENTIFICATION=C

� Base packages: base, datasets, graphics, grDevices, methods, stats, tools, utils

� Other packages: lattice 0.19-33, lme4 0.999375-39, Matrix 0.999375-50

� Loaded via a namespace (and not attached): grid 2.14.0, nlme 3.1-101, stats4 2.14.0

16

